50 research outputs found

    Numerical sampling rules for paraxial regime pulse diffraction calculations

    Get PDF
    Sampling rules for numerically calculating ultrashort pulse fields are discussed. Such pulses are not monochromatic but rather have a finite spectral distribution about some central (temporal) frequency. Accordingly, the diffraction pattern for many spectral components must be considered. From a numerical implementation viewpoint, one may ask how many of these spectral components are needed to accurately calculate the pulse field. Using an analytical expression for the Fresnel diffraction from a 1-D slit, we examine this question by varying the number of contributing spectral components. We show how undersampling the spectral profile produces erroneous numerical artifacts (aliasing) in the spatial–temporal domain. A guideline, based on graphical considerations, is proposed that determines appropriate sampling conditions. We show that there is a relationship between this sampling rule and a diffraction wave that emerges from the aperture edge; comparisons are drawn with boundary diffraction waves. Numerical results for 2-D square and circular apertures are presented and discussed, and a potentially time-saving calculation technique that relates pulse distributions in different z planes is described

    Numerical sampling rules for paraxial regime pulse diffraction calculations

    Get PDF
    Sampling rules for numerically calculating ultrashort pulse fields are discussed. Such pulses are not monochromatic but rather have a finite spectral distribution about some central (temporal) frequency. Accordingly, the diffraction pattern for many spectral components must be considered. From a numerical implementation viewpoint, one may ask how many of these spectral components are needed to accurately calculate the pulse field. Using an analytical expression for the Fresnel diffraction from a 1-D slit, we examine this question by varying the number of contributing spectral components. We show how undersampling the spectral profile produces erroneous numerical artifacts (aliasing) in the spatial–temporal domain. A guideline, based on graphical considerations, is proposed that determines appropriate sampling conditions. We show that there is a relationship between this sampling rule and a diffraction wave that emerges from the aperture edge; comparisons are drawn with boundary diffraction waves. Numerical results for 2-D square and circular apertures are presented and discussed, and a potentially time-saving calculation technique that relates pulse distributions in different z planes is described

    Ages for the Middle Stone Age of Southern Africa: Implications for Human behavior and Dispersal

    Get PDF
    The expansion of modern human populations in Africa 80,000 to 60,000 years ago and their initial exodus out of Africa have been tentatively linked to two phases of technological and behavioral innovation within the Middle Stone Age of southern Africa - the Still Bay and Howieson's Poort industries - that are associated with early evidence for symbols and personal ornaments. Establishing the correct sequence of events, however, has been hampered by inadequate chronologies. We report ages for nine sites from varied climatic and ecological zones across southern Africa that show that both industries were short-lived (5000 years or less), separated by about 7000 years, and coeval with genetic estimates of population expansion and exit times. Comparison with climatic records shows that these bursts of innovative behavior cannot be explained by environmental factors alone

    Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies

    Get PDF
    © 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 24 month embargo from date of publication (Dec 2017) in accordance with the publisher’s archiving policyStrontium isotope ratios (87Sr/86Sr) of archaeological samples (teeth and bones) can be used to track mobility and migration across geologically distinct landscapes. However, traditional interpolation algorithms and classification approaches used to generate Sr isoscapes are often limited in predicting multiscale 87Sr/86Sr patterning. Here we investigate the suitability of plant samples and soil leachates from the IRHUM database (www.irhumdatabase.com) to create a bioavailable 87Sr/86Sr map using a novel geostatistical framework. First, we generated an 87Sr/86Sr map by classifying 87Sr/86Sr values into five geologically-representative isotope groups using cluster analysis. The isotope groups were then used as a covariate in kriging to integrate prior geological knowledge of Sr cycling with the information contained in the bioavailable dataset and enhance 87Sr/86Sr predictions. Our approach couples the strengths of classification and geostatistical methods to generate more accurate 87Sr/86Sr predictions (Root Mean Squared Error = 0.0029) with an estimate of spatial uncertainty based on lithology and sample density. This bioavailable Sr isoscape is applicable for provenance studies in France, and the method is transferable to other areas with high sampling density. While our method is a step forward in generating accurate 87Sr/86Sr isoscapes, the remaining uncertainty also demonstrates that fine-modelling of 87Sr/86Sr variability is challenging and requires more than geological maps for accurately predicting 87Sr/86Sr variations across the landscape. Future efforts should focus on increasing sampling density and developing predictive models to further quantify and predict the processes that lead to 87Sr/86Sr variability

    The role of CSF1R-dependent macrophages in control of the intestinal stem cell niche

    Get PDF
    Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis. In the intestinal lamina propria CSF1R mRNA expression is restricted to macrophages which are intimately associated with the crypt epithelium, and is undetectable in Paneth cells. Macrophage ablation following CSF1R blockade affects Paneth cell differentiation and leads to a reduction of Lgr5 intestinal stem cells. The disturbances to the crypt caused by macrophage depletion adversely affect the subsequent differentiation of intestinal epithelial cell lineages. Goblet cell density is enhanced, whereas the development of M cells in Peyer's patches is impeded. We suggest that modification of the phenotype or abundance of macrophages in the gut wall alters the development of the intestinal epithelium and the ability to sample gut antigens

    Parma consensus statement on metabolic disruptors

    Get PDF
    A multidisciplinary group of experts gathered in Parma Italy for a workshop hosted by the University of Parma, May 16–18, 2014 to address concerns about the potential relationship between environmental metabolic disrupting chemicals, obesity and related metabolic disorders. The objectives of the workshop were to: 1. Review findings related to the role of environmental chemicals, referred to as “metabolic disruptors”, in obesity and metabolic syndrome with special attention to recent discoveries from animal model and epidemiology studies; 2. Identify conclusions that could be drawn with confidence from existing animal and human data; 3. Develop predictions based on current data; and 4. Identify critical knowledge gaps and areas of uncertainty. The consensus statements are intended to aid in expanding understanding of the role of metabolic disruptors in the obesity and metabolic disease epidemics, to move the field forward by assessing the current state of the science and to identify research needs on the role of environmental chemical exposures in these diseases. We propose broadening the definition of obesogens to that of metabolic disruptors, to encompass chemicals that play a role in altered susceptibility to obesity, diabetes and related metabolic disorders including metabolic syndrome

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Accidents and Hemorrahages Following the Extraction of Teeth

    No full text
    If a person would visit the offices of many a young practitioner, and then would visit the Marquette Clinic, his attention would be called to the marked difference in the handling of patients. On the one hand, namely, the dental clinic at Marquette, he would notice that every consideration is given to a patient, while on the other hand, the practitioner, he would probably notice a complete abandon from the necessary precautions for the welfare of the patient. ..

    Numerical sampling rules for paraxial regime pulse diffraction calculations

    No full text
    Sampling rules for numerically calculating ultrashort pulse fields are discussed. Such pulses are not monochromatic but rather have a finite spectral distribution about some central (temporal) frequency. Accordingly, the diffraction pattern for many spectral components must be considered. From a numerical implementation viewpoint, one may ask how many of these spectral components are needed to accurately calculate the pulse field. Using an analytical expression for the Fresnel diffraction from a 1-D slit, we examine this question by varying the number of contributing spectral components. We show how undersampling the spectral profile produces erroneous numerical artifacts (aliasing) in the spatial–temporal domain. A guideline, based on graphical considerations, is proposed that determines appropriate sampling conditions. We show that there is a relationship between this sampling rule and a diffraction wave that emerges from the aperture edge; comparisons are drawn with boundary diffraction waves. Numerical results for 2-D square and circular apertures are presented and discussed, and a potentially time-saving calculation technique that relates pulse distributions in different z planes is described
    corecore